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Abstract. Generalized uncertainty relations based upon Fourier transforms of both discrete and
continuous functions are briefly reviewed. We extend these results in order to establish discrete
versions of the angular momentum uncertainty relations, based uponSU(2) transformations.
Possible applications in quantum signal processing and computations are briefly discussed.

1. Introduction

It is well known that the familiar Heisenberg uncertainty relation for momentump and position
q, given by

1q1p > h̄

2
(1)

can be viewed as a direct consequence of Fourier analysis. That is, a function and its Fourier
transform cannot both be highly concentrated. Physically, this implies that the less the
uncertainty inq, the greater the uncertainty inp, and conversely [1]. Here, the relation (1) is
a variance-based uncertainty, whereby the expression1q in equation (1) above is understood
to be the standard deviation, defined by

1q ≡
√
〈ψ |(q − q̄ψ )2|ψ〉 (2)

with q̄ψ ≡ 〈ψ |q|ψ〉 for some normalized state vector|ψ〉.
Since Heisenberg’s intuitive, physically motivated derivation of the uncertainty relations,

a number of other approaches to such relations have been pursued. For example, in the
information theoretic (or entropic) uncertainty relations, as discussed briefly below, one
associates the Shannon information entropy to the measure of uncertainties. Another attractive
approach is the quantum extension of the classical Cramér–Rao inequality for parameter
estimation [2, 3]. This approach does not require the association of self-adjoint operators to the
parameters, therefore yields results more general than the standard uncertainty relations in the
sense that a large variety of physically important measurements can be treated systematically.

Although these alternative, variance-based approaches resolve some of the difficulties in
obtaining various types of uncertainty relations within the conventional description of quantum
mechanics, it is not obvious whether one can thereby recover operator uncertainty relations
[4] such as those concerning angular momentum. Also, the assignment of uncertainty to
discrete outcomes of the measurements of observables, such as spin or angular momentum,
has remained an open problem up to now.
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Recently, however, Donoho and Stark [5] provided, in the setting of signal processing
analysis, uncertainty relations involving discrete Fourier transforms. In this paper, we first
briefly outline, as a comparison, the results from entropic uncertainty relations. These results
are of considerable interest in their own right since in some circumstances they are ‘stronger’
than the conventional Heisenberg relations. We then briefly present the results that have
been obtained on generalized uncertainty relations arising in connection with Fourier analysis.
These notions are then extended in order to obtain new discrete versions of angular-momentum
uncertainty relation, one of which takes the form

N1N2 > 2j + 1 (3)

whereNi is the number of nonzero components of the angular momentum for a spin-j particle
in theith direction.

2. Entropic uncertainty relations

In quantum theory, any single observable or a commuting set of observables can in principle
be measured with arbitrary accuracy. However, there is in general an irreducible lower bound
on the uncertainty in the result of a simultaneous measurement of noncommuting observables.
Heisenberg’s relation is one such; however, Bialynicki-Birula and Mycielski [6], Deutsch [7],
and others [8] argued that, in a sense, the Heisenberg inequality is ‘too weak’ for practical
purposes, which led them to the establishment of information theoretic uncertainty relations.
In the entropic uncertainty relations the information entropy

H(p) = −
∫
p(x) lnp(x) dx (4)

for a given probability distributionp(x), serves as an accurate measure of uncertainties. Within
the context of Fourier theory, Hirschman [9] argued that ifψ(x) andψ̃(k) are related through
a Fourier transform

ψ̃(k) = 1√
2πh̄

∫
dx e−ikx/h̄ψ(x) (5)

then the following inequality holds:

H(|ψ |2) +H(h̄|ψ̃ |2) > 1 + lnπ. (6)

This inequality was proved by Beckner [10] and Bialynicki-Birula and Mycielski [6], and
it has been applied to a number of contexts in quantum mechanics. For example, one of
Bialynicki-Birula’s inequalities [11] takes the form

H1x(|ψ(x)|2) +H1k(|ψ̃(k)|2) > 1− ln 2− ln

(
1x1k

h̄

)
(7)

where H1x(p(x)) = −
∑

i p
X
i lnpXi , whose left-hand side is understood to have the

interpretation of [7] ‘uncertainty in the result of a measurement ofk andx’. Here, the notation
pXi denotes the probability of finding the observableX in its ith interval1xi of the spectrum.

He also extended the argument to cover an entropic uncertainty relation for angle and
angular momentum given by

H1φ(p
m
φ ) +Hcm(p

m
Jz
) > − ln

1φ

2π
(8)

where the probabilitiespmφ andpmJz are given respectively bypmφ =
∫
1φm

dφ |ψ(φ)|2 and

pmJz = |cm|2, and the wavefunction

ψ(φ) = 1√
2π

∞∑
m=−∞

cmeimφ (9)
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depends upon the angular variableφ and its expansion coefficientscm into the set of
eigenfunctions ofJz. Analogous studies have also been made by Sánchez-Ruiz [12], who
examined in detail the lower bound of the entropic uncertainty relation for angular momentum
variables, given by

H(Jz) +H(Jz′) > − ln

[(
2j
n∗

)(
cos2

β

2

)2j−n∗ (
sin2 β

2

)n∗]
(10)

wheren∗ = [(2j + 1) sin2(β/2)] andβ is the angle between the two axisz andz′.
It is interesting to note that recently Steane [13] has extended the entropic uncertainty

relation in order to obtain a discrete form of uncertainty relation, from which he made a link
between basic quantum theory and the linear error correcting codes of classical information
theory. He considered a ‘binary’ basis called ‘basis 1’ and another basis ‘basis 2’ which is
obtained by rotating the original basis 1. Now, suppose a state can be written as a superposition
of M1 of the product states of basis 1 and a superposition ofM2 of the product states of basis
2. Then, Steane’s inequality gives a lower bound on the product of these two numbers:

M1M2 > 2n (11)

wheren is the total number of ‘binary states’. Note that the analysis of Steane can be extended
to the context of angular momentum studied in [12]. Specifically, we obtain†

NzNz′ >
{(

2j
n∗

)(
cos2

β

2

)2j−n∗ (
sin2 β

2

)n∗}−1

. (12)

For further details on entropic inequalities, we refer to the above-mentioned references. Here,
instead, we shall first review some recent developments in signal processing, then extend these
notions in order to obtain new discrete versions of the angular momentum uncertainty relations.

3. Fourier-based inequalities

Let us start by providing a number of standard definitions and theorems. The functions and
sequences used are all elements ofL2 or l2, with unit norm, unless otherwise specified. The
discrete Fourier transform of a sequence{xt } of lengthN is defined as

x̃ω ≡ 1√
N

N−1∑
t=0

xte
−2π iωt/N (13)

and for the continuous Fourier transform, we have

f̃ (ω) ≡
∫ ∞
−∞

dt f (t)e−2π iωt . (14)

Now, we introduce two operatorŝPT andP̂�. The time limiting operator̂PT is defined as

(P̂T f )(t) =
{
f (t) t ∈ T
0 otherwise

(15)

and the frequency limiting operator̂P� is

(P̂�f )(t) =
∫
�

dω e2π iωt f̃ (ω) (16)

† This result was pointed out to us by the anonymous referee ofJ. Phys. A: Math. Gen.
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whereT and� are arbitrary measurable subsets on the real line. The norm of a bounded
operatorQ is defined to be

‖Q‖ = sup
g∈L2

‖Qg‖
‖g‖ (17)

with theL2-norm of a functionf given by‖f ‖2 = ∫∞−∞ dt |f (t)|2. It follows from Parseval’s

identity that theL2-norms of a functionf and its Fourier transform̃f agree:‖f ‖ = ‖f̃ ‖.
We say that a functionf is εT -concentrated if‖f − P̂T f ‖ 6 εT for a real numberεT and

similarly f̃ is said to beε�-concentrated if‖f − P̂�f ‖ 6 ε�. Hence iff is εT -concentrated
on a measurable setT andf̃ is ε�-concentrated on a measurable set�, we have

‖f − P̂�P̂T f ‖ 6 εT + ε�. (18)

Next, defining the operatorQ by (Qf )(t) ≡ ∫∞−∞ q(s, t)f (s)ds, the Hilbert–Schmidt norm
of Q is then given by

‖Q‖HS ≡
(∫ ∞
−∞

∫ ∞
−∞

dt ds |q(s, t)|2
)1/2

. (19)

Note that the two norms are related by‖Q‖ 6 ‖Q‖HS .
With these definitions at hand, we can verify that the Hilbert–Schmidt norm ofP̂�P̂T is

given by‖P̂�P̂T ‖2HS = |T ||�|.
The proof is sketched as follows. First, we write the Hilbert–Schmidt norm ofP̂�P̂T as

(P̂�P̂T f )(s) =
∫
�

dω e2π iωs
∫
T

dt e−2π iωtf (t)

=
∫
T

(∫
�

e2π iω(s−t)
)
f (t) (20)

so that(P̂�P̂T f )(s) =
∫∞
−∞ dt q(s, t)f (t), whereq(s, t) is defined as

q(s, t) =

∫
�

dω e2π iω(s−t) t ∈ T
0 otherwise.

(21)

Then, the Hilbert–Schmidt norm can be calculated to be

‖P̂�P̂T ‖2HS =
∫
T

dt
∫ ∞
−∞

ds |q(s, t)|2

=
∫
T

dt
∫ ∞
−∞

dω |1�e−2π iωt |2

=
∫
T

dt |�| = |T ||�| (22)

where we have used Parseval’s identity, and 1� denotes the indicator function of the set�.
Using the relation introduced above we are now in a position to note a number of

generalized uncertainty relations. First, we prove the following lemma for discrete functions.

Lemma (Donoho and Stark). If the sequence{xt } of lengthN hasNt nonzero elements, then
{x̃ω} cannot haveNt consecutive zeros.

Let {yτ } (τ = 1, . . . , Nt ) denote the nonzero elements in{xt }. Then, if we denote the
frequency interval under consideration byω = l + 1, . . . , l +Nt for somel ∈ (0, N − 1), we
can write

gk ≡ x̃l+k = 1√
N

Nt∑
τ=1

yτ (zτ )
l+k (23)
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where zτ = exp[−2π i/N · τ ]. Defining the matrixZkτ = (zτ )l+k/
√
N , the above relation (23)

can then be rewritten in vector notation asg = Zy. Sincey 6= 0 by definition, ifg = 0, then
the matrixZ must be singular. However, by definition,Z is anNt ×Nt Vandermonde matrix
which is known to be nonsingular [14], and henceg 6= 0, i.e.,{x̃ω} cannot haveNt consecutive
zeros. A consequence of this lemma is the following theorem.

Theorem (Donoho and Stark). Suppose that{xt } is nonzero atNt points and that{x̃ω} is
nonzero atNω points. Then, the following inequalities hold:

Nt ·Nω > N (24)

Nt +Nω > 2
√
N. (25)

The proof for the first inequality follows directly from the above lemma, since a sequence
without gaps always has the correct number of nonzero elements to satisfy the inequality.
The second inequality follows immediately from the first, since for all positive numbers the
arithmetic mean is larger than the geometric mean.

A useful theorem for the continuous functions can be obtained by combining equation (18)
and the Hilbert–Schmidt bound for the operator norm, and by use of the triangle inequality.

Theorem (Donoho and Stark).LetT and� be measurable sets on the real line, and suppose
there is a Fourier transform pair(f, f̃ ) such thatf is εT -concentrated onT and f̃ is ε�-
concentrated on�. Then,

|�||T | > (1− (εT + ε�))
2. (26)

An analogous result can be obtained for the discrete cases, which will be discussed later.
We note that, in the case where the setsT and� are both single intervals, a sharper bound
was obtained by Slepian, Landau, and Pollak [16, 17]. They have shown that, in this case, the
norm‖P̂�P̂T ‖ is the largest eigenvalue of the operatorP̂�P̂T P̂�, and the eigenvalue analysis
of this operator was studied.

4. Angular-momentum uncertainty relations

In this section we demonstrate that the discrete uncertainty relations above can be generalized
to provide discrete analogues of the standard angular momentum uncertainty relations, for
example,

(1Ĵx)
2(1Ĵy)

2 > h̄2

4
〈Ĵz〉2. (27)

Note that the average〈·〉 depends upon the state of the system. Hence, if one chooses an
eigenstate of̂Jz, for example, then the right-hand side is justm2h̄4/4.

As an illustration, consider now the situation where one observes an ensemble of polarized
spin particles with unknown polarization direction, but knows that all the particles are
identically prepared. These particles may be regarded, for example, as hydrogen atoms or
alkaline-earth metal atoms which do not exhibit the anomalous Zeeman effect. For simplicity,
we assume that the observer uses Stern–Gerlach devices with magnetic fields directed at angles
θ1 or θ2 relative to thex-axis. The detectors are then screens along theθ1- andθ2-axes. Each
screen is divided into 2j + 1 intervals (i.e., one-dimensional boxes) wherej is the highest spin
of the atom, which is assumed known. After observations of the ensemble (where the number
of particles is assumed to be� 2j + 1) along, say, the direction of theθ2-axis, one obtains an
assignment of numbers to the respective boxes.
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Suppose that, as a result of the observations, one obtains a distribution sharply peaked
somewhere along theθ2-axis. The commutation relations between angular momentum
operators imply the impossibility of simultaneously determining more than one component
of the angular momentum. Hence, if we measure theθ1-component of the same atoms, we
intuitively expect to obtain a widely spread distribution. If these (θ1 andθ2) distributions were
related by a Fourier transform, then from the above arguments we would obtain

N1 ·N2 > 2j + 1 (28)

whereNi (i = 1, 2) denotes the number of nonzero elements (nonempty boxes) along theθi-
axis. However, the spinor components with squared amplitudes defining these two distributions
are related by the following rotation matrix [15]:

d
(j)

m′m(β) =
[
(j +m′)!(j −m′)!
(j +m)!(j −m)!

] 1
2
(

cos
β

2

)m′+m (
sin

β

2

)m′−m
P
m′−m,m′+m
j−m′ (cosβ) (29)

rather than by a Fourier transform. Here,P is the Jacobi polynomial

P a,bn (x) = (−1)n

2nn!
(1− x)−a(1 +x)−b

dn

dxn
[(1− x)a+n(1 +x)b+n] (30)

and the angleβ in our case isθ2 − θ1. Hence, it is not clear that an inequality such as (28)
should hold. However, in the following we shall prove that all the relevant submatrices ofd

(j)

m′m
have nonvanishing determinants except for few values ofβ belonging to a set of measure zero,
and hence, following the same argument as in the Fourier transform case, the above relation
(28) is indeed valid.

In order to prove this, we must first show that, for any fixed value ofm′ (that is, a fixed row
of the matrixd (j)

m′m), anyj + 1 +m′ (m′ = −j, . . . ,+j) elements of the row are independent
functions. That is, all the 2j + 1 elements in the first row of the matrix are independent,
any 2j elements of the second row are independent, any 2j − 1 elements of the third are
independent, and so on. If this is the case, which we shall prove below, then all the relevant
submatrices are Wronskian matrices [14] of independent functions which are known to have
nonzero determinant. This implies that the distribution of the numbers along theθ1-axis cannot
haveN2 consecutive zeros, and hence (28) follows.

Since we are interested in the determinants of the submatrices under consideration, we
omit some irrelevant parts, that is, parts common to the rows or to the columns, in expressions
(29) and (30). Performing a simple coordinate transformation fromx to z = 1 +x, we obtain

d
(j)

m′m ∼
dn

dzn

[∑
k

(
j −m
k

)
(−1)j−m−k2kz2j−k

]
→
∑′

k

(
j −m
k

)
zj+m′−k (31)

where
∑′ denotes a summation with the restrictionsj +m′ > k andj −m > k, and we have

also omitted some irrelevant factorials. Now, for any fixed rowm′, we denote the indicesm
of the arbitrary chosen columns in this row bymi , wherei = 1, . . . , j + 1 +m′. This labeli
corresponds to the labelτ previously used in describing the Fourier transform. We then expand
this row into a matrix, denoted byBik, by varying the labelk, i.e.,

Bik =

(
ri
k

)
ri ≡ j −mi > k

0 otherwise.

If we defineB̂ik = ri(ri − 1) . . . (ri − k + 1)zri , thenB̂ is nonsingular if and only ifB is.
However,B̂ can be viewed as a Wronskian matrix for the monomial of powerri . Moreover,
B̂ is nonsingular sinceri 6= rj for i 6= j . Thus, we have shown that anyj + 1 +m′ elements
in rowm′ are independent, as required.
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The next step is to prove that the submatrix defined by an arbitrary set ofN2 number of
columns and the same number of consecutive rows (e.g.m′ = l+1, . . . , l+N2) is a Wronskian
matrix of independent polynomials. However, this follows directly from (31). It is now clear
by the same arguments as those used above for the case of Fourier transforms that the spinor
components relative to theθ1-axis cannot haveN2 consecutive zeros. However, we are merely
interested in the nonzero elements of the probability distributions, which simply correspond
to the nonzero spinor components. Hence, we are led to the following result:

Theorem. LetN1 be the number of nonzero spin-components of a spin-j particle in any given
one direction, and letN2 be the number of nonzero spin-components in a different direction.
Then, apart from a number of directions belonging to a set of measure zero, the following
inequality holds:

N1 ·N2 > 2j + 1. (32)

As a trivial extension, we can obtain the following bound for simultaneous measurements
of k different components of the angular momentum of the atoms.

Corollary. Let{Nk} be the set of numbers of nonzero spin-components ink distinct directions.
Then,

N1 ·N2 . . . Nk > (2j + 1)k/2. (33)

Note that, although the above proof follows for almost any angleβ, in order that the
inequality be valid for the caseβ � 1, the required sample size must approach infinity. Also,
as mentioned above, the set of angles where the determinants of some submatrices vanish is
of measure zero. For example, it can be shown that the inequality (28) does not hold for any
nonzero spinj if the angleβ = nπ .

5. Bandlimited uncertainty relations

In the foregoing discussion, we have assumed an ideal situation where the number of particles
is large, and the observer can ascertain with sufficient certainty whether or not any particles
have arrived at any given box. Otherwise, we can block some of the detector boxes and confine
our attention to the particles passing through the remaining boxes. After these particles have
passed through the field of the Stern–Gerlach magnet in the first direction, we recombine the
beams and then measure the components in another direction. For such cases, as well as in
general, an approximate version of the above inequality is useful. We shall consider this for
both Fourier transforms and spinor rotations in the following discussion.

Again, we consider two distributionsfm andf̃m′ =
∑

m dm′mfm. If dm′m is an element of
U(1), then this is just a discrete Fourier transform, and ifSU(2), thenfm denote the normalized
spinor components corresponding to one axis andf̃m′ be those corresponding to another axis,
rotated by the angleβ relative to one. We now define two projection operators, given by

P̂T fn =
{
fn n ∈ T
0 otherwise

(34)

and

P̂�fn =
∑
m∈�

d†
nmf̃m (35)

for some index setsT and�. The sequencefn is said to beεT -concentrated on an index
setT if ‖f − P̂T f ‖ =

∑
n |fn − P̂T fn| 6 εT , and similarly,f̃ is ε�-concentrated on� if
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‖f − P̂�f ‖ 6 ε�. Therefore, iff is εT -concentrated onT andf̃ is ε�-concentrated on�, we
have‖f − P̂�P̂T f ‖ 6 εT +ε�, whence it follows that‖P̂�P̂T ‖ > 1−εT −ε�. We now find an
upper bound for the norm of̂P�P̂T . Consider first Fourier transforms. In this case, the bound
can simply be obtained by introducing the Frobenius matrix norm‖Q̂‖2F ≡

∑
m,k q

∗
mkqmk of

an operatorQ̂, which is defined byQ̂fm ≡
∑

n qmnfn.
Since the conventional norm of an operator satisfies the inequality‖Q̂‖ 6 ‖Q̂‖F [5], we

now calculate the norm‖P̂T P̂�‖F . In terms of the matrix elements, one obtains

P̂�P̂T fk =
∑
m

qkmfm (36)

with

qkm =


1

N

∑
m′∈�

e2π im′(k−m)/N m ∈ T
0 otherwise.

(37)

Using the Parseval’s equality (i.e., the norm of an operator is the same as that of its Fourier
transform), the Frobenius matrix norm can easily be calculated as‖P̂�P̂T ‖2F = NT · N�/N .
Hence, we are led to the following result.

Theorem (Donoho and Stark). Let {(ft ), (f̃ω)} be a Fourier transform pair with(ft ) εT -
concentrated on the index setT and(f̃ω) ε�-concentrated on the index set�. LetNT andN�
denote the number of elements ofT and�, respectively. Then,

NT ·N� > N(1− (εT + ε�))
2. (38)

Now, suppose we have a measurement that is restricted to the setT containingNT
elements (boxes), from whichεT can be evaluated. After choosingN� boxes for the second
measurement, we find an upper bound for the observed intensity 1− ε� given by

1− ε� 6
√
NTN�

N
+ εT (39)

assuming 1− (εT + ε�) > 0.
Note that the above results (26) and (38) can be improved further by exploiting the fact

thatqkm is a positive matrix, hence the Perron–Frobenius theorem can be applied to study the
largest eigenvalue of the matrix, with the result [18]

S

(
NT ·N�
N

)
> (1− (εT + ε�))

2 (40)

whereS(x) is defined asS(x) ≡ 2
π

Si(x)− 1
π

sin(x), with the sine integral Si(x) which admits
the power series expansion

Si(x) =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!(2n + 1)
. (41)

Returning to the case of angular momentum, in terms of the matrix elementsdm′m given
in (29), one obtains

P̂�P̂T fk =
∑
m′∈�

d
†
km′
∑
m∈T

dm′mfm

=
∑
m∈T

( ∑
m′∈�

d
†
km′dm′m

)
fm

=
∑
m

qkmfm
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with

qkm =

∑
m′∈�

d
†
km′dm′m m ∈ T

0 otherwise.

The resulting bound obtained by the Frobenius matrix norm in this case is not sharp and thus
one must look into the possibility of using different methods. In particular, it is clear that
the norm depends not only uponNT andN� but also upon the turning angleβ. Moreover,
if β � 1, then it is always possible to find an example where the above (38) does not hold.
Therefore, we restrict our attention to the caseβ ∼ π/2. In this case, the bound can easily be
obtained, by finding the largest element of the matrix, with the result(

N

N/2

)
NTN�

(
sin

β

2
cos

β

2

)N
> (1− (εT + ε�))

2. (42)

6. Discussion

We have generalized the uncertainty relations that have previously been developed for Fourier
transforms toSU(2) transformations in order to derive discrete angular momentum uncertainty
relations. However, there are many possible applications within the framework of Fourier
transforms, including position–momentum or time–energy uncertainty relations. While
conventional uncertainty relations assume that the concentrations of the function (distribution)
and its Fourier transform are on continuous intervals, the above results (24) and (25) are valid
for concentrations on arbitrary measurable sets. Moreover, as shown in [5] for the case of
Fourier transforms, the inequality (38) also holds for continuous functions. These inequalities
also have important applications to signal recovery in quantum communication theory and
quantum spectroscopy.

Another obvious application would be to discrete quantum mechanics [19], where
generalized uncertainty relations for Fourier theory discussed above can be applied without
any modification of the proofs. Also, these generalizations can be further extended to obtain
uncertainty relations on Lie groups, with obvious applications in the field of particle physics,
including measurements of discrete quantities such as isospin or hypercharge, etc. Such
extensions can be studied by using the Peter–Weyl theorem [20].
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